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An effective solution of various boundary-value problems of thermoelasticity for a hollow infinite cone and an infinite conical 
panel, when conditions of symmetry or antisymmetry are specified on the plane boundaries of the panel, is constructed in a spherical 
system of coordinates by the method of separation of variables. A solution of the boundary-contact problems of thermoelasticity 
is constructed in the case when such bodies are multilayer bodies. The contact surfaces are conical surfaces. A steady temperature 
field and surface perturbations act on the body. Moreover, certain boundary-value problems of the theory of elasticity are solved 
by this method for bodies bounded by coordinate surfaces of a spherical system of coordinates, when inhomogeneous boundary 
conditions are specified on the conical surfaces of the body, and conditions of symmetry or antisymmetry are specified on the 
plane boundaries, while special homogeneous boundary conditions are specified on the spherical surfaces. 0 2003 Elsevier Science 
Ltd. All rights reserved. 

The elastic equilibrium of infinite conical bodies has been investigated by many researchers (see the 
brief review of these publications in [l]). The problem of the elastic equilibrium of a hollow infinite 
cone was solved in [ 11. Apparently, even the problem of the elastic equilibrium of a hollow infinite cone 
had not previously been solved. 

1. FORMULATION OF THE PROBLEM 

We consider and solve two classes of problems in a spherical system of coordinates Y, a, fl: 
(1) static problems of thermoelasticity for an infinite conical panel 

R = {O<r<w,O<cr.<a,,p,<P<P,> (1.1) 

and for a multilayered infinite conical panel 

sz* = R, +Q2,+i-2,+ . . . 

where 

% = {O<r<oo,O<a<cl,,P,<P<P,.,}, k = 0, 1,2 ,... (1.2) 

and conditions of symmetry or antisymmetry [2] are specified here and henceforth when 01 = aj 
(j = 0, 1; a0 = 0); 

(2) certain boundary-value problems of the theory of elasticity for a finite conical panel 

Q = {rO<r<r,,O<a<a,,P,<P<P,} (1.3) 

when special conditions are specified for Y = rj (j = 0, 1). 
In both classes of problems a perturbation is introduced from the conical surfaces /3 = &, and 

p = &, while in the case of a multilayered body it is also introduced from the conical contact surfaces. 
For an infinite conical panel the boundary conditions and temperature perturbations on the conical 
surfaces p = PO and p = p1 can be arbitrary, like the contact conditions in the case of the thermoelastic 
equilibrium of a multilayered panel. 
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2. THE EQUILIBRIUM EQUATIONS, THE BOUNDARY CONDITIONS 
AND THE GENERAL SOLUTION 

The equations of thermoelastic equilibrium for a uniform isotopic body can be represented 
form [3] 

AU- &2graddivU - K--2 ‘-‘ygradT = 0, AT = 0; K = 4(1-v) 

in the 

(2.1) 

Here U = urlr + u& + z& is the vector of the displacements along the axes of a Cartesian system of 
coordinates, T is the change in the temperature of the body, v is Poisson’s ratio and y is the coefficient 
of linear thermal expansion. 

It follows from the first equation of (2.1) that AdivU = 0, and hence 

2gradT = A(R, T), 2graddivU = A(RdivU), R = xl, + yl, + ~1, 

Using these equations, the first equation of (2.1) can be written in the form 

and also in the form 

A[~(K - 2)U + R(2divU - (8 - K)~T)] = 0 (2.2) 

grad[KdivU - (8 - tc)yT] - (K - 2)rotrotU = 0 (2.3) 

(we have used the well-known identity AU = gradrot U - rotrotu). In a spherical system of coordinates 
(or in any other form of rotationally symmetrical coordinates) we thus obtain the equation 

A[ ( K - 2)Hrot’% + z( KdivU - (8 - ~c)yT)] = 0 GW 

where rot(“)U is the projection of the vector rotU onto the tangent to the coordinate line a, while %i 
is one of the three Lame coefficients in rotationally symmetrical coordinates (the remaining two Lame 
coefficients are equal to one another), which is equal to rsinJ3 in a spherical system of coordinates. 

Finally, using relations (2.2)-(2.4), the following equations can be obtained in a spherical system of 
coordinates Y, a, p 

AK = 0, r2sin2flAD - D- 2v, = 0, r2sin2PAv- v+- 20, = 0 

w~~+K’w = sinp(v,-KD+--(K-l)cosfl(u,-tcD)- 

-KrsinP(K, + ~cr-*K) - t/2 (8 - K)yrsin/3[sinPTa f cosP(rT),] (2.5) 

u aa + K214 = rsin~[(v~-KD)r-(K-l)~~r(~~-~D)J+ 

+Ksin&+~~Kcos~- t/z(8-K)yr[rsin2flT,.- sin/3(cos/3T)a-~T] 

where 

K = ucosp-wsinp- ?[+ - (rw),] - $$yrcospT 

D = usinp+wcosp+K_2 r[y(r’U), + (wsinP)a + vaj - &yrsin/3T _ 

Here, u, v, w are the components of the displacement vector U along the tangents to the coordinate 
lines r, a, p, and the subscripts, Y, a and p denote partial derivatives with respect to the corresponding 
coordinates. 

The expressions for the stresses in terms of the displacements and the temperature have the form 
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= XzdivU + - 2 ( t-sin/3 
2), + wcosp + usinp) -&yT 

AR”’ = XzdivU + 22.4, - x3yT, 
P 

.p = XzdivU + F(wp + u) - x3yT = 

= (~-2) (2.6) 

1 -[Wa + sin2j3 --Z 
r-sin fi ( )I b" = ;(ua+'wr-w) s@p’ P 

rz 
0 

1 2” - K +-V E 
r r rsinp a’ x,=-3 - K-2 p = 2(1+v) 

where R(‘), A(@), B@) are the normal stresses, A @) = B(@, R(s), A(‘) = R(“) are the shear stresses and E 
is the modulus of elasticity. 

We will henceforth consider the thermoelastic equilibrium of an infinite conical panel, occupying 
region (1.1). 

The boundary conditions, which will occur here, are given below 

a = aj: a) T, = 0, I.I = 0, Bca) = 0, da) = 0 or 

b) T = 0, Aca) = 0, w = 0, u = 0 

p = pj: ej,Tp+ ej2T = zj(r, a) 

f3 = pj: gj,B@‘+gj2F = fjlCrv 01), &?j~B(” + gjh: = fjz(‘, a) 

gjsBca) + gjhf = fjJ(r, a) 

(2.7) 

P-3) 

(2.9) 

Here j = 0, 1, and oo = 0; Qjl, Q, gjl, . . . , gj6 are specified constants, subject to the conditions 

OjlOj2 2 0, gjlgj2 2 0, gj3gj4 ’ 0, gj5gj6 2 0 

We will consider the conditions imposed on the function zi(r, a) andfik(T, a) (k = 1,2,3) in Section 
3 (when solving specific boundary-value problems); we will merely indicate here that these functions 
are such that the matching conditions are satisfied on the edges of the infinite conical panel. Conditions 
(2.9) can be assumed to be non-classical if at least seven of the 12 coefficient gjk (k = 1, 2, . . . , 6) are 
non-zero. When gi2 = gj4 = g$ = 0 and gjl = gjs = gjs = 1 we will have the boundary conditions of the 
first problem of thermoelasticity, and when gji = ~3 = gjs = 0 and gjz = gj4 = & = 1 we will have the 
second problem of thermoelasticity, etc. Note that it follows from the form of conditions (2.8) and (2.9) 
that some conditions can be specified when p = PO, and others when p = pl. 

Conditions (2.7) in case a are called symmetry conditions, while in case b they are called antisymmetry 
conditions. 

It can be shown by a direct check that the solution of the system consisting of the first three equations 
of (2.5) can be represented in the form 

K = ~pl, D = (~2)p_ctgP(~,),, 2) = (cP~)p+ctgS(%)a (2.10) 

where (pl, (p2 and (p3 are arbitrary harmonic functions. 
Using the method of separation of variables and taking boundary conditions (2.7)-(2.9) into account, 

the harmonic functions T = (po, (pl, ‘p2 and (p3 can be represented in the form 
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“pj = r-‘f2 c 7 L(@“‘)&, j = 0, 1,2, 3 
m=oo 

L(@“‘) = Qy’(j3, m, n)cos(ma)cos(ninr) i #‘(p, m, n)cos(ma>sin(nlnr) + 

+Q’:j)(p, m, n)sin(ma)cos(nlnr) f @y’(p, m, n)sin(ma>cos(nlnr) 

The functions Q$) (p, m, TZ) can be expressed in terms of Legendre functions as follows: 

(2.11) 

@y’(p, m, n) = A,!$ 
(2.123 

k= 1,2,3,4; i=fi 

Here A$;,, B$& are constants. If 0 4 a G 27c, then instead of boundary conditions (2.7) we will have 
the periodicity condition, where m = 15 (6’~ = 0, 1, 2, . _ .) and, generally speaking, all four functions cI$ 
(p,, m, n) will be non-zero; if 0 i a G al 6 2n, then m = nE&x or m = n(iZ + l/2)al and either 
CD?) (p, m, n) and Q$j’ (p, m, n) or CDyj (/3, m, n) = 0 and @y’ (p, m, a) = 0. If m is a half-integer number, 
i.e. a number of the form ?(fi + l/z), then instead of the functions which occur in expression (2.12) 
we can use the elementary functions P:‘&;“& (cos p) and P’&+,]$ (cos /3), or more correctly, their 
combinations. The expressions for the functions occurring in relation (2.12) with arbitrary index m are 
known from the reference literature [4, p. 1481. When PO = 0, we will take B$$, = 0 for the boundedness 
of the solution. 

Substituting expressions (2.11) into relations (2. lo), we will have 

q = r-1’2 c jL(F’%n, q = K, D, u (2.13) 

where F’pj (p, m, n) are known expressions, which include the constantA(kA, and B(kin from (2.12) and 
which depend on p, m and y1 (the operator L(F”qj) is obtained from the operator L(@kj) by replacing 
@fj (p, m, n) by Fp) (/3, m, n) in the latter. Taking expressions (2.13) into account, the fourth and fifth 
equations of (2.5) take the form 

&&K2P = -U2 r c j,UF’v’j - I,(cpo,,jldn, p = w,u (2.14) 
rir=oo 

Here 

ru((Pomn) = $8 - @vfrsin2P(cpo,,),- sinP(cosP~o,,)p - wOmnl 

rkJ(PomrJ = $3 - W~sinPEsinP(cpo,,)p +- co~P(r~0mn)r3 

where qonrn is the expression under the series and integral signs in (2.11) whenj = 0, and L(F@)) is an 
expression similar to the expression for L(@)) from relation (2.13). 

We will assume that K f m, and hence the solutions of Eqs (2.14) can be written in the form 

Consequently, we finally have for K, D, v, w and u 

q = r-I’* C j[L(F’“‘) - P~q’(cpo,,>]K,dfl, q = K, D, II, w, u 
i=oo 

(2.15) 



The therrnoelastic equilibrium of conical bodies 115 

where Pp) = 0 when q = K, D, u, Pp) (cpo,,) = IY,(c+TJ~~~) whenp = w, u, K, = 0 when q = K, D, 2) and 
K, = l/(v? - m2) when q = w, u. Using relations (2.15) and (2.6), we obtain for the stresses 

CT = r-3’2 i j&(P) - P~)(cpo,,>ldn, cs = $), /p), Bm, B(a), BW, p (2.16) 
m=oo 

where P$@(cpo,,) is a known expression, which depends on (pomrz. 

3. AN ANALYTICAL SOLUTION OF 
SOME BOUNDARY-VALUE PROBLEMS 

As an example, we will construct a regular solution of boundary-value problem (2.5), (2.7b) and (2.9) 
in region (1.1) for p = rc - PO and for T = 0 with 

gj2 = gj4 = gj6 = O, gjl = gj3 = gjs = 1 

We will call this problem problem Go and we will represent it in the form 

G, = G, +G2 

where Gi is problem Go with a load distributed symmetrically about the plane 0 = n/2, while Gz is 
problem Go with a load distributed antisymmetrically about the plane p = -SC/~. 

We spoke above of a regular solution of the problem, and hence we will define the meaning of 
regularity. 

A solution of system (2.5), defined by the functions u, _v, w, will be called regular if the functions u, 
v, w are thrice continuously differentiable in the region Q, where s2 is the region Q together with the 
boundaries a = oj, while on the surface fi = pj they can be represented, together with their first 
derivatives, by a certain absolutely and uniformly converging expression, representing a Fourier-Mellin 
integral with respect to r and a Fourier series with respect to a. 

We will confine ourselves to solving boundary-value problem Gt, in which in addition to conditions 
(2.7, b), the symmetry conditions 

and the conditions 

w = 0, B”’ = 0, B(@ = 0 when p = ~12 

B”’ = f,(r,a), B”’ = f2(r,a), da) = f3(r,a) when p = PO 

are satisfied. The functions cpi, (~2 and (p3 in the case considered take the form 

Here 

p(k) = PIT/2 + in(-COS p> + t-1 lkpI”;,, + in( COS p) 

‘7/2 + in (--cos PO) 
R(W = Rck)sin(ma), R13c) = Racy, R”’ = A~~,,cos(nlnr) + A~~,sin(nlnr) 

k= 1,2,j= 1,2,3,m=xii/a, 

The constants A$,,, APA,, . . . , A$:, are found from the system of equations 

(3.1) 



116 N. 6;. Khomasudridze 

For convenience in writing formulae (3.2) we have denoted $1, B(‘) and BCa) by /$3, /3r, and pa 
respectively, f&,,, and fkm12 are the Fourier coefficients of the mnctions r3Qfk(r, a) (k = 1,2,3), represented 
by a Fourier-Mellin integral with respect to r and a Fourier series with respect to a; with respect to 
the functions P~sP)(pO, m, n), . . . , F$b*$30, m, n), see formulae (2.16). The following conditions are 
imposed on the continuous functionsfj.(r, a), which occur in conditions (3.1) [5]: 

1) the derivatives of the functionf&, a) with respect to Y and with respect to a are continuous and 
belong to the Holder class, 

2) for any value of a E [0, or] the following integral converges 

It can be seen that (3.2) is a system of linear algebraic equations with a sixth-order matrix (this system 
can be converted appropriately for best conditionality of its matrix). The uniqueness of the solution 
obtained can be proved using the energy integral, and it follows from the uniqueness of the solution 
that the determinant system (3.2) is non-zero. 

Hence, we have obtained a regular solution of problem Gr. In exactly the same way we can also solve 
problem G2 and any of the boundary-value problems (2.5) and (2.7)-(2.9) for any PO and pi. 

In this paper we direct our main attention to obtaining regular solutions of boundary-value problems 
of thermoelasticity for an infinite conical panel, and will not investigate the behaviour of the solutions 
in the neighbourhood of r = 0, and when Y -+ w (we will assume that functions specified on the conical 
boundary surfaces satisfy the requirements which guarantee that regular solutions will be obtained). 

4. A MULTILAYERED INFINITE CONICAL PANEL 

We will consider an infinite conical panel, multilayered along the coordinate p axis, which occupies the 
region Q”, representing the union of regions (1.2) when k = 0, 1, 2, . . . 3, s - 1, which are in contact 
with one another along the conical surfaces j3 = flj (j = 1,2, . . . , s - 1, where s is the number of layers), 
Each layer has its own elastic and thermal characteristics. When a = a0 and a = CI~ one of the sets of 
conditions (2.7) is simultaneously satisfied for all the layers. 

At the boundary of the body occupying the region ln*, conditions (2.7)-(2.9) are satisfied with 
/3i replaced by p, in (2.8) and (2.9). The following conditions are specified on the contact surfaces 
l3 = l3j (j = 1, 2, . . . ) s - 1) 

wj-wj+l = Fjl(r, a), BT-B,P+l = Fj*(T, CX) 

'j-"j+ 1 = Fjs(r, a), Bf - BP+ 1 = Fjd(r, a) 

Here hi, A;+, are the thermal conductivities and Zjr(Y, a), Xjz(r, a), Fjt(~, a), . . . , Fjb(r, a) are given 
functions. 

Formulating the problem of finding the thermoelastic equilibrium of a multilayered infinite conical 
panel, for thejth layer we will construct expressions for cpi(j = 0, 1, 2, 3) 4 and o (see formula (2.11), 
(2.15) and (2.16)) taking conditions (2.7) into account, and, following the method described in 
Section 3, we obtain two systems, similar to system (3.2): one, consisting of 4s linear algebraic equations 
with 4s unknowns (determining the temperature field), and the other, consisting of 1% linear algebraic 
equations with 12s unknowns (for a body, closed with respect to a, the orders of the matrices of 
the corresponding systems of linear equations are equal to 8s and 24s). The convergence of the 
series, representing the displacements and stresses, is proved and also the uniqueness of the solutions 
obtained. 

In addition, we should also consider a number of other contact conditions, for which solutions of the 
boundary-contact problems of thermoelasticity for a multilayered infinite conical panel can be written 
just as effectively. 
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5. ELASTIC EQUILIBRIUM OF A FINITE CONICAL PANEL 

Consider the elastic equilibrium of a finite conical panel, occupying region (1.3) when ra > 0, when 
conditions (2.7) remain in force (naturally, when there is no condition imposed on T), and when 
Y = Yj and P = pj one of the conditions from the following set is satisfied 

r = rj: a) u = 0, rv,-(K-1)2) = 0, rW,--(K-l)W = 0 

b) ru,+KU = 0, u=o, w=o 
(5.1) 

p = Pj: a> W = fj*(r, Ct), U = fj*(1, Ct)‘, 2) = fj3(r, Ct) 

b) B(a) = fjl(r, a), u = fjz(r, a), u = fjj(r, a) 

c) B”’ = fjl(‘t a)? u = fjz(r, CX), Bcu) = fjs(r, CX) 

d) w = fjl(r, a), B”’ = fj,(r, a), Bca) = fj&, a) 

e) W = fjl(r, Cl), B(‘) = fj2(1, CX), II =: 5;.3(T, CL) 

f) W = fjl(r, a), U = fjz(r, a), Bca) = fjs(r, Ct) 

We will assume that the function r1/2&(r, a), together with its first derivatives, and the functions 
r3’2fi&, a) can be expanded in uniformly converging double trigonometric series. 

As an example we will consider the solution of boundary-value problem (2.5), (5.1, b), (2.7, b), (5.2, 
c), where in condition (5.2, c) 

The functions cpl, (p2 and (p3 in the case considered take the form 

‘pj = r-l’* i C @‘“‘(fit m, n)\riL(r, a), j = 1, 2, 3 
i=rn=r 

The functions Q(j)@, m, n> are defined by formula (2.12) 

YiA(r, cx) = sin(ma)[(2K - 1)xJr) - 2nx,(r)] 

Ycj(r, a) = sin(ma)x,(r), Y$+A(r, a) = cos(ma)X,(r) 

(5*3) 

7Tm nn 
m = -, 

al n = lnr, - lnrO’ Xs(r) = sin nln-Il , 
( 1 YO 

X,(r) = cos nlnl: 
( > r0 

Substituting expressions (5.3) into the last equation of (2.10) and into the last two equations of (2.9, 
we obtain 

r1’22) = C C F(‘)(P,m,n)Y~~(r,a), rl’*w = C C F@+‘)(P,m,n)Y~~(r, a) 
m=on= 1 m=on= 1 

r”2u = C C FCU’(P, m, n)\Ycl(r, a) 

rit=lji=l 

(5.4 

In turn, substituting expressions (5.4) into the third and fourth formulae of (2.6) and taking conditions 
(5.2, c) into account, we obtain,, when p = pj (j - 0, 1) 

re3’* i c F”‘(Pj, 112, n)YEi(r, a) = tfjl(r, a) - (K-2)r-‘fjz(r, a) 

m=on= 1 
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r-1’2 c i Fc2’(pj, m, n)Y~‘ii(r, a> = _?j2(rr a) 
k=OZ=l 

ry312 c i FO’(pj, m, n)Y~~(r, a) = iff3(r, a) 
rn=Oi=l 

From these relations we obtain the system 

Fck’(Pj, m, n) = f:i, j =&I; k= I,3 

wheref$,$, j$ andfz), are the Fourier coefficients of the functions 

(5.53 

(5.6) 

r312 ifj,(r,a)- vj;,:r,CY+)], 

,i 

- r112fj2tr, a), 

r3/2 
rfj3(Y9 a> 

res ectively. The constants Alma, Blmn, . . . , b&,, 
fikY(P 

to be determined are contained in the expressions 
j, m, n) and are determined from system (5.6) with a sixth-order matrix. We have thereby obtained 

a regular solution of the problem in question. 
If r. = 0 in problem considered above, i.e. 0 < r < r1 or r1 < Y < 00, the series in 5 are replaced by 

an integral over rz in formulae (5.3) and (5.4). 
Hence, we have obtained a regular solution of the problem in region (1.3) when to > 0, when 

ro = Oandwhenro> O,rl = 00. 
An investigation of such problems, when conditions (5.1, a) are specified on at least one of the 

boundary surfaces r = 5, has not so far been carried out, but everything stated in Section 5 for boundary- 
value problems (2.5), (5.1, a), (2.7), (5.2) also. 

It is not difficult to write a solution in region (1.3) in the case when one of conditions (5.1) is specified 
when r = r. and the other is specified when r = rl. 

Example 1. Consider the three-dimensional boundary-value problem of the theory of elasticity on 
the bending of a thin conical ring with a cut, occupying the region (1.3) when al = 2n and /3r = rc - p1 
(the faces of the cut a = 0 and a = 27~). The bending stressed state corresponds to the following boundary 
conditions 

fl = pj: w = for- ti sin nr1r-i~ sin;, Bi’) = 0, Bca) = 0 
( 1 (5.7) 

r = rj: u, + K-u = 0, u=Q, w=o 
I WV 

cc = aj: A@) = 0, w = 0, u = 0 (5.9) 
where 

j = 0, 1, p, = rc- PO, cxo = 0, m, = 2n; ‘2i = ,nr, _” lnr , f. = const 
0 

Note that in terms of the theory of thin-walled structures, conditions (5.8) and (5.9) can be interpreted 
as a free support. 

The plane l3 - x/2 for a conical ring is a plane of asymmetry, and hence 

B(P) = Q , u = 0, v = 0 when l3 = xi2 (5.10) 

and will be considered as region (1.3), in which PO < l3 c 7c/2. In this case conditions (5.7) when l3 = /$J, 
like conditions (5.8) and (5.9), remain in force, and we arrive at boundary-value problem (2.5), 
(5.7)-(5.10) (in condition (5.7)j = 0). In this case the functions cpl, cp2 and (p3 take the form 

VPj 
= Ajr- ‘4 sin- ‘4 Pch[n($ - P)] Yc/‘(r, a), j = 1,2,3 (5.11) 
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2 

Fig. 1 

whereAi are constants, and the functions ‘I$i)(r, a) are equal to the corresponding functions Y$ 
(Y, a) when n = n1 and M = l/2. 

Taking 

15 60 
r. = fi, rl = i_?, K = 2.2 n, = &, v = 0.45 

> 
) f. = 1, p. = 0.45X 

we findAl = -0.4036, A, = 0.7765 andAs = -0.0021, and we obtain an expression for the normal stress 
B@). A graph of B@) as a function of the coordinate r for a = 7[: and l3 = TC/~ is shown by the upper 
curve in Fig. 1. 

Example 2. We now consider the elastic equilibrium of the conical ring with a cut of the previous 
example, changing only the boundary conditions on the conical surfaces, namely, we replacefo by (-1)’ 
f. in conditions (5.7). In this case we will have compression of the conical ring, and the plane p = ~$2 
will be a plane of symmetry, so that 

w = 0, B(‘) = 0, Bta) = 0 when p = 7~12 (5.12) 

and we arrive at the boundary-value problem to be considered in region (1.3) when [0 < p < z/2]. 
If in expressions (5.11) the hyperbolic cosines are replaced by hyperbolic sines, we obtain the functions 

cpl, ‘p2 and (p3 for the problem considered. Further, if ro, rl, ~,f~ and PO remain the same as in Example 
1, thenAl = -1.0137, A2 = 1.3556 andA = 0.0062, and the graph of B(P) as a function of the coordinate 
r, when a = II: and p = 7c/2, will be the lower curve in the figure. 

As might have been expected, in a bent thin conical ring there is essentially no stress B@)(r7 TC, ,iZ”J 
(its least value is equal to 2.6 x 10M1’ ,tt and even if we assume u = 2 x lo6 kg/cm’, we obtain 5.2 x lo- 
kg/cm’), whereas in the case of the compression of the above-mentioned ring the greatest modulus value 
is B@)(r, z, n/2) = 9.6~. 
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